Пригласите вашего учителя в наш клуб | Как мне получить логин-пароль |
§ 12-л. Равномерное движение по окружности | ||||||||||||||||||||||||||||||||||||||||||||||
Завершая изучение основ кинематики, рассмотрим движение, которое является равномерным и ускоренным одновременно, поскольку вектор мгновенной скорости меняется особым образом. Рассмотрим спутник, равномерно летящий по круговой орбите вокруг Земли: за равные интервалы времени он пролетает равные части пути, поэтому мгновенная скорость спутника сохраняет свой модуль. То есть можно говорить о наличии скорости равномерного движения (см. § 12-д). Однако при этом мгновенная скорость непрерывно меняет направление. Найдём, куда направлен вектор изменения мгновенной скорости в двух произвольных точках траектории А и В. Для этого сделаем новый чертёж, обозначив Землю зелёной точкой, а спутник – красной. Выберем вблизи положений спутника А и В пары точек А1, А1 и В1, В2. Изобразим в каждой из них вектор мгновенной скорости спутника (см. чертёж). Пользуясь «правилом треугольника» для нахождения разности двух векторов, построим и обозначим векторы изменения мгновенной скорости (см. правую часть чертежа). Построение при Δt→0 показывает, что при равномерном движении по окружности вектор изменения мгновенной скорости, оставаясь постоянным по модулю, в любой точке траектории направлен к центру окружности. То есть существует так называемое центростремительное ускорение, сонаправленное с вектором изменения мгновенной скорости и имеющее модуль, который всегда можно вычислить по следующей формуле:
Эта формула выводится из геометрических построений и рассуждений. Они сложны, поэтому мы приводим формулу без вывода. Важно: в отличие от ранее рассмотренных, в этой формуле присутствует не вектор и даже не проекция мгновенной скорости, а её модуль. В наше время на балконах и крышах домов нередко можно видеть антенны-«тарелки», принимающие спутниковый телевизионный сигнал. Не кажется ли вам удивительным, что спутники, на которые направлены антенны, неподвижно «висят» в небе? Вспомним: Земля обращается вокруг своей оси за 24 часа. И если спутник будет облетать вокруг нашей планеты с периодичностью 24 часа, то он будет двигаться синхронно с вращением Земли, всё время «пролетая» над одной и той же точкой земной поверхности. Такие спутники и их орбиты называются геостационарными. Известно: геостационарные орбиты находятся на высоте около 30000 км над поверхностью Земли. Подсчитаем, с какой скоростью летают по ним спутники. Длину орбиты найдём по формуле длины окружности: l = 2πR. Время оборота по орбите 24 часа, а радиус Земли около 6000 км.
Вычисленное значение показывает, что на геостационарной орбите вектор мгновенной скорости спутника, оставаясь постоянным по модулю, ежесекундно меняется на 0,2 м/с по направлению. |
Физика.ru • Клуб для учителей физики, учащихся 7-9 классов и их родителей |